Maximum entropy principle for stationary states underpinned by stochastic thermodynamics.
نویسنده
چکیده
The selection of an equilibrium state by maximizing the entropy of a system, subject to certain constraints, is often powerfully motivated as an exercise in logical inference, a procedure where conclusions are reached on the basis of incomplete information. But such a framework can be more compelling if it is underpinned by dynamical arguments, and we show how this can be provided by stochastic thermodynamics, where an explicit link is made between the production of entropy and the stochastic dynamics of a system coupled to an environment. The separation of entropy production into three components allows us to select a stationary state by maximizing the change, averaged over all realizations of the motion, in the principal relaxational or nonadiabatic component, equivalent to requiring that this contribution to the entropy production should become time independent for all realizations. We show that this recovers the usual equilibrium probability density function (pdf) for a conservative system in an isothermal environment, as well as the stationary nonequilibrium pdf for a particle confined to a potential under nonisothermal conditions, and a particle subject to a constant nonconservative force under isothermal conditions. The two remaining components of entropy production account for a recently discussed thermodynamic anomaly between over- and underdamped treatments of the dynamics in the nonisothermal stationary state.
منابع مشابه
Mimicking Nonequilibrium Steady States with Time-Periodic Driving
Under static conditions, a system satisfying detailed balance generically relaxes to an equilibrium state in which there are no currents. To generate persistent currents, either detailed balance must be broken or the system must be driven in a time-dependent manner. A stationary system that violates detailed balance evolves to a nonequilibrium steady state (NESS) characterized by fixed currents...
متن کاملInformation theory explanation of the fluctuation theorem, maximum entropy production and self- organized criticality in non-equilibrium stationary states
Jaynes’ information theory formalism of statistical mechanics is applied to the stationary states of open, non-equilibrium systems. First, it is shown that the probability distribution p of the underlying microscopic phase space trajectories over a time interval of length τ satisfies p ∝ exp(τσ /2kB) where σ is the time-averaged rate of entropy production of . Three consequences of this result ...
متن کاملOn the Problem of Formulating Principles in Nonequilibrium Thermodynamics
In this work, we consider the choice of a system suitable for the formulation of principles in nonequilibrium thermodynamics. It is argued that an isolated system is a much better candidate than a system in contact with a bath. In other words, relaxation processes rather than stationary processes are more appropriate for the formulation of principles in nonequilibrium thermodynamics. Arguing th...
متن کاملMinimum entropy production principle from a dynamical fluctuation law
The minimum entropy production principle provides an approximative variational characterization of close-to-equilibrium stationary states, both for macroscopic systems and for stochastic models. Analyzing the fluctuations of the empirical distribution of occupation times for a class of Markov processes, we identify the entropy production as the large deviation rate function, up to leading order...
متن کاملStatistical Thermodynamics of General Minimal Diffusion Processes: Constuction, Invariant Density, Reversibility and Entropy Production
The solution to nonlinear Fokker-Planck equation is constructed in terms of the minimal Markov semigroup generated by the equation. The semigroup is obtained by a purely functional analytical method via Hille-Yosida theorem. The existence of the positive invariant measure with density is established and a weak form of Foguel alternative proven. We show the equivalence among self-adjoint of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 92 5 شماره
صفحات -
تاریخ انتشار 2015